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Abstract 
 
Recent studies propose causal machine learning (CML) methods to estimate 
conditional average treatment effects (CATEs). In this study, I investigate 
whether CML methods add value compared to traditional CATE estimators by 
re-evaluating Connecticut’s Jobs First welfare experiment. This experiment entails 
a mix of positive and negative work incentives. Previous studies show that it 
is hard to tackle the effect heterogeneity of Jobs First by means of CATEs. 
I report evidence that CML methods can provide support for the theoretical 
labor supply predictions. Furthermore, I document reasons why some traditional 
CATE estimators fail and discuss limitations of CML methods. 
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